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Average-ion level-population correlations in off-equilibrium plasmas
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We present techniques to calculate statistical distributions in time-dependent off-equilibrium atomic physics.
Starting from the master equation, a first method assumes a Gaussian distribution and deduces the time
evolution of the means and correlations. Alternatively, the discrete probability distribution is written as the
product of the known statistical factor with the exponential of an unknown function. This function of the
electronic populations can then be fitted using a second-order polynomial. Another method sets up a continu-
ous version of the master equation, then expands the probability around the most probable configuration. It is
remarkable that the obtained equation set is the same as in the Gaussian approximation of the first method. A
major property of all these models is that they recover the probability distribution of thermodynamical equi-
librium, when external conditions make it possible. Numerical tests on a two-level system are presented.
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[. INTRODUCTION around the most probable one. It is quite remarkable that the
obtained equations are the same as in the Gaussian approxi-
Simulations of laboratory and astrophysical plasmas neethation.
absorption and emission spectra of highly charged ions in The paper is organized as follows. The formulation of the
many different conditions. Among the atomic physics mod-master equation in the framework of an exact discrete statis-
els, we can separate those that use a discrete description tisfs is recalled in Sec. II. In Sec. lll, the Gaussian approxi-
matter from those that use a continuous one. The former am@ation is made. In Sec. IV, we present the aforementioned
consistent with the quantum reality of matter, but they arediscrete approximation. The continuous model, which can be
often difficult to use, due to the enormous number of statesised either as such, or to find a discrete statistics, is de-
that should be taken into account. Much simplification isscribed in Sec. V. In Sec. VI, the time evolution generated by
needed, and this is usually done by means of a continuoute three models is compared numerically on two-level sys-
model such as an average ifh-5], which calculates mean tems. Section VIl is the conclusion.
values. As for two-electron correlations, well-established
methodg6-9] are used when thermodynamical equilibrium
(LTE) prevails, but little has been done to tackle them out of
equilibrium[6]; this is the problem we want to address. Consider an atom havinly electronic levels with integer
The models that describe time-dependent off-equilibriumdegeneracie®;. A configuration{n} is defined as a set of
statistics rely on the master equati@ee[10], for instance.  integer occupation numbers of these levels,n,,....ny
This equation describes the evolution of the statistical distri{also called populationsin addition to thes&l bound levels,
bution of probabilities under the action of microscopic pro-there is a continuum of free electrons denoted
cesses. In this paper we present several attempts to obtain The evolution of the probability distributio®({n},t) of

from the master equation a practical description of the statisthe various configurations is driven by the master equation
tics of plasmas off-equilibrium. A first method assumes a[10,11]

Gaussian distribution of probabilities and deduces the time

evolution of the mean values and correlations of populations. 3

A second one, extending the expression valid at thermody- — piinthy=> p(im)R —P(n R
namic equilibrium(LTE), writes the probability of a configu- ot (nh) {Em:} AMERymy gy = P4 }){zm:} ) {m}
ration{n} as

II. MASTER EQUATION

whereR, . is the rate of transitions from a configuration
P({n},t)y=W({npexd —A({n},1)], to another one. Physically, the transitions arise from interac-

tions with external sourcesuch as collisions with free par-
whereW({n}) is the known statistical factor, as&({n},t) is ticles, absorption or emission of light
a function to be determined. Assuming that this function of Here we only consider one-particle transitions: bound-
the populations is a second-order polynomial, we get théound transitions —j, ionizationsi—c, and recombina-
time evolution of the coefficients of this polynomial from the tions c—i. The rate of transitions between configurations
master equation. A third method constructs a continuous vercan then be written in terms of transition rates between lev-
sion of the master equation, and the solution is developedls:
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R{m}—»{n}:izl 121 <k1¢_iI,j 5mk ,nk) 5mi ,ni—l‘Smj ,nj+1Tj—>i({m}:t)+i21

gi 5mk ,nk) [5mi ,ni—ch—>i({m}ut)

+ 5mi ,ni+1Ti—>c({m}1t)]-
Following an established usage, we write the rat@s}) as functions of thénitial configuration of the transition. An obvious
convention isT;_,;=0.

The number of electrons; in the departure level and the number of holBs < n;) in the arrival level can be factored out
to recall that there is no transitign—i starting from an empty levgl, or going to a full leveli:

Ti;({n},)=ni{(D;—nj) 7i_;({n},1),
Tioc{nhO=ni7_({n}t), T i({n},t)=(Di—ny) 7e_i({n},1). (1)

The reduced rates,_;, 7_., and._; generally depend both on populations and on time.
The master equation is then

%mmvgpwmeWMHZPwuﬁHmwaPmmm%mw%nmb;nﬂwb

+ZT%HMHZTHNM% )

where the initial configurations of the transitions are carefiguration. Such microreversibility relations exist for each

fully distinguished: kind of rate(detailed balance principleeach pair of levels,
and each configuration.
{n}=(nkei j,niun), Mg j,mi—1n;+1), If these relations hold, the LTE distribution
1 D;! 1
{mo}=(Nsi,ni—1), {mg}=(Ny;,ni+1). 7’({”}):2<H m)ew[—? E({n})

Thermodynamical equilibrium _'MEi n;

: 4)
The total energ¥({n}) is a function of the configuration. ]

For instance, the screened-hydrogenic m¢8el2| assumes where the statistical weighequal to the degeneracy of the

it is a third-order polynomial. Quantum-mechanical models__ . L . A
S configuration is factored out, and whei&is a normalization
of the atom lead to second-order polynomials in the popula;

tions [13,14], with coefficients depending on a referencefaCtor’ Is a steady-state solution of the master equaginn

configuration. _ _ _
When the external sources responsible for the transitions Evolution of average populations and correlations
are in thermodynamical equilibrium at temperatdreand Let us now consider the evolution equation for the aver-

chemical potentialu, the reduced rates verify the micror- age populations
eversibility relations

mo=%7%mhmn

Tiej({”})exl{ - % E({n})

The notationX) means the statistical average of the quantity

=Tj—>i({m1})exﬁ{_%E({ml})}a X({n}):

<m=%7MM¢mqmy

imeng — 1 ECln)

E(m) From Eq.(2), we obtain
m J—
:TCHi({mZ})eXF{_#}- 3

d

gp (o =(Vi), 5
On each side of these equalities is a rate, with the initial

configuration of the transition, and the energy of that conwhere
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Vi, )

ViETcﬂi_Tiﬂc*’; (Ti—i=Tip) Frade

=(Dj—n))7e_i—NiTi_¢t ni(D;—nj)7_; L . .
(D= M) o = MiTie ;[ (BT which is the set of equations actually solved in the non-LTE

n(Di—n)7 ] ©) average-ion code$4,5,15. The electroneutrality of the
R R Ca b plasma is ensured by the constrathtn;)+Z* =Z, whereZ

So far, this equation has been the best justification for théS the nuclear charge, and whez& can be calculated ana-

non-LTE average-ion method#]. In an off-equilibrium  lytically [5,9,18.

average-ion calculation, the transition rafgs.; are func- Equation(2) also yields

tions of the population®; considered as continuous vari-

ables. A first approximation consists of using “average”

ratesT;_,;, independent of the configurations, calculated, for

example, by using average populations. For any function

X({n}) of the populations, we now denote Byits value at

the average configuratioX=X({n}), n;=(n;). The evolu-

tion equation(5) can then be recast as where

d
a(ninj>:<niVj+njVi+Bij>, (8)

B|JE_TI—>]_T]~>I+5I] TCHi+Ti~>C+2k (Ti*?k—’_Tk*?i)}

E_ni(Dj_nj)Tiﬂj_nj(Di_ni)Tjﬁi"_5ij[(Di_ni)Tcﬁi"_niTiﬂc_'—zk [Ni(Dx—ny) 7i it Ni(Di—ny) 7] ¢

(€)

Linearizing the continuous rates around the average popula- lll. GAUSSIAN PROBABILITY

tions Equation (2) is too general to be practical for highly

e charged ion plasmas. We therefore assume continuous occu-

_ J . . . "

_ pation numbergn} instead of integer values, a “large num-
=T+ — (nj—{n; ; X .

T{np)=T Z an; (0= (i), bers hypothesis,” and we neglect orbital relaxations. We can

then rewrite Eq(2) as
Mirone et al. [17] get an equation for the time evolution of
the correlation or covariance matrix - P(nH=> PAMDT;i({n})

i
Eij=(ni—(n))(nj—(np))) =(minp) —(n;){n;),
+ 20 PUm Tei({n})

which we write in the form

N, _ FVa + 2 PUmH Tie({nh = P({n})

d Vv, _
- Bi= — Byt — 2. +Bi:.
dt i Ek: 07I'lk ki zk: ﬁnk Kkj BIJ (10)

I

X

Z Tjﬂi({n})ﬂLz Te_i({n})
Linearizing the transition rates around the average con- h !
figuration thus yields a somewhat simple set of equati@hs
and(10) that must be solved self-consistently. Equati@f) + 2 Ti_.({n}H)
being decoupled from EdY7), it can be solved afterwards; !

being linear in the unknowrs, it s relatively easy to solve. \yg now propose a heuristic argument to find an approximate
However, a linear approximation of the rates may seem quess,| tion to this equation. Writing

tionable, if only because bound-bound ratgls have a

built-in second-order factofT;_;=n;(D;—n;) 7;_;. But, if P{m,},t)=exd —S({m,},1)], 1<a=<3,

rates were developed to second order, the time evolution of

the average would depend on correlations, which in turra Taylor expansion oP({m,},t) in the occupation numbers
would depend on higher-order correlations. Such situationaround a reference configuration is performed. At the level of
are known to be difficult. approximation required here, we retain the first order for

. (11)
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S({m,},t), or equivalently the second order #({m,},t) (instead of[0,D;]), the matrixC is the covariance matrix
while neglecting any second derivative §{{m,},t) with related to the Gaussian probability. The classical theory of
respect to populations. The motivation of these assumptionuctuations extends the Gaussian approximation to any func-
is the compatibility with LTE, which will appear clearly tion of the populations. The variance of a funct¥({n}) is
later. For the applications we have in mind, and followingthen
previous work[8,9,18, we consider a Gaussian approxima-

. X X
tion: 2 _ —_Cc. —
1 IX i ani CIJ &nj '
n},t)y=exg — = An;(t)w;; (H)ANn, (1) |, . . .
PAnLY F{ 2 .ZJ (Do (DAY Hence, the covariance mati&is in fact more useful than its
. o inversew.
where An;(t)=n;—N;(t). The reference population;(t) Using the matrix identity

=(n;) are still unknown but near the average ones. The time-

dependent symmetric matrpw;;(t)] is an estimate of the

electron correlations:c(l)ij(t)w(Ani(t)Anj(t)hEij .
Starting from Eq(11) we can write ¢;=4d/dn;)

d d
at Ci= _% Cik(a wk|>C|j ,

we obtain thdinear evolution equation

iP—E 9, P— P+ 3(F5 P+ 95 P—235P) T = Vo
Fraiap- [ 9] iP+3(d5 i iPIT_i({n}) d S N - N, P .
at =4 an, Wt 2 e ktBij, (19

142
+Z [(= P+ 20 P)Te-a({n}) identical in form to Eq.(10), whereB;; has been defined in
Eqg. (9). The Gaussian ansatz to the solution of the master
equation thus leads to a set of equatigh$), (15) having the
me form as Eq47) and(10).
The parameters of the Gaussian probability at LTE have
been found to b¢8,9,18

+(P+3P)Ti({nP].

Replacing the Gaussian estimate in this equation and usin%a
aisz%Ek',(Ankwki)(Amw,j)P, equations for the first and
second order ilAn, are obtained. The first order is

d __ - R D;

* wki(ﬁni_vi):o’ 2 N L ex (1) (7T — )]
whereV, has been defined in E¢p), andX is a notation for D, 1 J°E
X({A}). The second onr yields R ©i=% mD, A T T anyan;”

d N N

One can check that these are indeed solutions of Ed.
and (13) when appropriate microreversibility relations are
satisfied.

—akaEi wik+2i

an an, wj|
+Ei (TeoitTiso) wikw;
IV. APPROXIMATION OF A DISCRETE NON-LTE
— DISTRIBUTION
+2 Ti—i(oik—op) (0 —wj). (13 .
] Principle
If the matrix  is nonsingular, we find that the popula-  Taking the equilibrium distributior{4) as a model, we
tions {A} satisfy the non-LTE average-atom equationsW”te the probability of a discrete configuration as

[4,5,15, already seen as E(7): D.
I
g P({n}.t)= ( I 7= ) exi{ —A({n},1)], (16
~ -~ | [ I 17+

& n; :Vi . (14)
where the known statistical weight is factored out, and where

The evolution equationél3) for (wy) are nonlinear. How- A({n},t) is a function of the populations and of time to be
ever, it is the matrixC, inverse ofw, which is of physical determined.

interest since it gives an estimate of two-electron correla- Using this form of P({n}) and the reduced ratd$), the
tions. Extending the range of continuous occupancieB to master equatiofi2) becomes

oA
—E({n}):; ni(Dj_nj){Tjﬂi({ml})quA({n})_A({ml})]_Tiej({n})}*'Ei ni{7c_i({m})exd A({n})

—A({mh)] = 7in({nh}+ Z (Di=ni{ric({mshexd A({n}) —A{msh) ] = 7ei({np)}, 17
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where We now perform an approximation. We assume thiata
second-order polynomial in the populations. The dynamics
AN} —A{mM}) = ANz j,Ni.Nj) of the statistics is then described by the time dependence of
— A(Nsij M= 10+ 1), the coefficients of this polynomial. Let us wrife as

A({n}) —A({my})=A(Ngi,N) —A(Ngi,ni— 1), A({n},t)=Ao(t)+2i ai(t)ni+%2 b (O,
A{NH —A{Ma}) =AMz M) — ANz ,ni+1) (18) !

are finite differences of the functiof of the integer popu- For each configuration, equatiéh?) is a linear relation sat-
lations {n}. This new form(17) of the master equation is isfied by the {N2+3N+2)/2 unknowns dAy(t)/dt,

mathematically equivalent to the original of®. da;(t)/dt, anddby;(t)/dt. It is written as
(L;A,‘[O*‘Z %”ﬁ% < %ninj:iz; ni(Dj_nj)[Tiﬂj({n})_Tjﬂi({ml})eA({n})iA({ml})]+Ei: nil[7i—c({n})
— 7e-i({meh) M AT (D= ) [ 7ei({n})
— 7i_c({mg})eAin = Admsh ], (19
|
where description of the statistics that uses a moderate number of

dynamical quantities and still takes electronic correlations
1 into account.
A({{np) —A({m})=a;—a;+ > (2bj; —bjj —by;)
Thermodynamical equilibrium

+; (bik— by, When the external sources responsible for the transitions
are in thermodynamical equilibrium, the reduced rates verify
the microreversibility relationg3), and

1
A({{np)—A({my})=a;— 7 Di + > by, 1
‘ A(n =3 |Eqnh—n n

1
A(inp) —A(ims}) = —a;— 5 bji — ; bin. (200 s a stationary solution of the master equatia).
Using a Taylor expansion around the average configura-
Choosing N+ 1)(N+2)/2 distinct configurations such that tion, limited at order two with respect to occupation humbers

the set of linear equatiorjshe left-hand-side of Eq19)]is L/} the energy is written as
nonsingular, evolution equations are obtained:

1
E({n})=E0+Ei uini+ > IEJ Vijnin; .

d d
aai:Fi, ab”:G” (21)
With
Aq(t), which does not appear on the right-hand side of Egs.
(19), is kept for normalization. U-n Vij

The problem with this method is that the rafgsandG;; bij ==~
depend on the configurations that are chosen. We propose to
choose the configurations among the most probable ones. The right-hand side in the set of equatiofi®) is equal to

that aim, we first perform an average-atom calculationzero. Because this linear set is nonsingutie configura-

which yields a noninteger reference configuration: tions are chosen accordinglythe stability condition
Mo 2 9 pe=0 —0, Lp-0
" 1+expdAlon)’ dt o= g &= g T

We then retain the integer configurations that are nearess$ satisfied. The model is therefore compatible with thermo-
neighbors to the reference one. Hence, we obtain a discretiynamic equilibrium.
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DISTRIBUTION

V. APPROXIMATION OF A CONTINUOUS NON-LTE JE
( =E({nk=+i.ni}) —E({ngsi,ni—1}),

<9ni)
. . . (MM~ 12
We now construct a continuous model with noninteger

populations. By “construct,” we mean ‘“define the basic (&E JE

an;  an;

constituents” from which everything else will be deduced
exactly. Thus, we consider a configuratiom} defined by a
set of noninteger populations;,n,,...,ny of the various
electronic levels (&n,<D),). =E({Nkxij,ni}) —E{Nksij mi—1n+1}),

The total energye({n}) of the ion is now a continuous
function of the populationga second{2,7] or a third-order  if the total energy is a second-order polynomial of the popu-
polynomial as in the screened-hydrogenic md@el2)). The  lations.
partial derivatives oE({n}) with respect to populations are
interpreted as the energies of the levels, and we denote them Continuous version of the master equation

Ei({n}):

) {”ksti,j N —1/2;1j +1/2}

Unlike the standard LTE procedure used to define a con-
JE tinuous extension of a discrete statistical modies., the
mean-field approximatiofi7—9]), we proceed by defining a
continuous extension of the master equatibn). This equa-

The energy of transitions—c or i< are defined from the tion is “non-local” in the configuration space, since the rate

Eiza—ni.

level energies; they are derivatives of the total energy,  ©f change at configuratiofn} depends omN(N+1) neigh-
bor configurations. It appears slightly simpler if the transition
JE JE JE rates are indexed by the intermediate “half-integer” con-
Ei:a_ni’ Ei- j:&_ni_ a_rlj’ figurations: only then are the configurations that index the

up-rate and the down-rate the same. Changing the finite dif-
instead of the finite differences of the discrete cases. To agerences ofA into derivatives, writing all terms at the same
preciate the approximation thus made, note that there is agonfiguration {n} instead of the various “half-integer”
exact correspondence at some intermediate “half-integer'neighbors, a “local” approximation to the master equation

points[19,20: (17) is obtained:
|
ﬁA_E b dA A S A
P ni(D;—nj)| 7j_; ex an, an, Tio| T 20 M| To—i €X an; |~ Time
A
+Z (Di—ni) Ti ¢ GX4—E)—TCHJ. (22)
I |
|
The microreversibility compatible with this continuous A Ei—pu
model is an equality betweefunctionsof the continuous ==

populations{n}: o T
Thus, the microreversibility relations, extended to equalities
(23) between functions of the populations, make the whole
, statistical distribution of fluctuations at equilibriui@) a
consequence of our continuous master equati#). This
very strong property(stronger than recovering the most
e h=r -({n})exp{ Ei({n})—ﬂ} (23  Probable configuration, for instancis the best support for
=c et T the off-equilibrium continuous model presented.
Replacing, in Eq(16), the entropy term due to the con-
To implement this definition of the continuous microrevers-figurations(i.e., the product of combinatorial factorsy its
ibility, we must interpolate the rates of the discrete modelusual continuous counterpart
which are only defined in the intermediate “half-integer”
configurations, and modify one of the rates if the total energy s({nh)=— E
is not a polynomial of degree two. i
The equality(23) between functions of the populations is
satisfied when the external sources responsible for the traive write the probability of a noninteger configuration as
sitions have reached thermodynamic equilibrium at a tem-
peratureT with a chemical potentigk. It is easily seen that
the stationary solutions of the master equati@® are then

i~ {n})= mi({n}»ex;{ Ei({””;Ej({n})

n;

D;

Di—ni

n; In D.
I

+(Di—ni)ln<

1
P(En}t)= Z0 exd —®({n},1)],



where

d({n},t)=—S{np) +A({n},1)

is a kind of free energy, and where the partition function

Z(t) is the normalization factor. From E@22), and using

the definitions(1), we deduce an equivalent master equatlon

for &:

ad 9P 1
¥ Tii ex ony om;)

+ E Tei ex;{ j—:)l) - 1}

o211

an;
Kinetics of the most probable populations

+2 Tie

(29)

The most probable populatios are solutions to the set
of equations
in[ ="
=N Di — N

We assume here tha@ has a true and unique minimum;

od
ani

oA 0
+ —=0.
(9ni

(29
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tives is positive definite in that point, so that the solution of
the linear systenEiwij[(d/dt)ﬁ\i—Vi]=0 is zero, and the
evolution equation is just Eq14). The kinetics(14) of the
most probable configuration is thus an exact consequence of
the master equatiof24). The equations of thmost probable
jon (14) have the same form as the usaakrageion equa-
ns (7).

As a particular case of thermodynamic equilibripre-
ceding sectiopy the most probable populations, obtained
from Egs.(25), are given by the Fermi-Dirac formulas:

D;
1+exd (Ei—w)/T]

n=

Statistics near the most probable configuration

We now consider the second derivatives of the master
equation(24), which are related to correlations. Following
the same lines that were detailed in the previous subsection,
we calculate the second derivativeﬂdt)aZCD/anianj of the
master equation(24), then the total time derivatives
(d/dt)aZCI)/anio?nj. Once evaluated at the most probable
configuration, we find that the equation for the symmetric
matrix wijza2<b.ﬁianj has exactly the relatively simple
form (13).

The time-evolution equationd.3), as well as the kinetics

other cases are beyond the scope of this paper. For any fund4), are thus exact consequences of the continuous master

tion X({n}) of the populations, we now denaeits value at
the most probable configuratioX:=X({n}).

The time evolution o is obtained by taking a total time
derivative “following the motion:

ds(ax X d
at” " gt < an dt™

equation(24). A nontrivial property is then easily obtained:
if the rates satisfy the continuous microreversibility relations
(23), then

s D 1 #E
PO R —h) T anyan;’

which is the LTE result, i.e., the matrix of second derivatives
of ®({n})= —S({n})+(1f|’)[E({n}) uZin;], is a station-

Applied toX= a@/an, , Which is constantly zero, this reads ary solution of equationél3).

d ~
dt "

2

d (9(1)
Eﬂnj i

E0) )

d ()
_a (9_nj B &ni&nj

Because®({n}) is minimum in configuration{n}, the
matrix o of its second derivatives is positive-definite in that
point, so that it can be inverted. The evolution equation for
the inverse matrixC=w ! is of course thdinear evolution

These relations form a set of linear equations satisfied by thequation(15).

unknownsdn;/dt, with matrix wijzaztbléﬁi&nj. The par-
tial derivatives of the master equati¢®4), calculated at the
most probable configuration, are found to be

2 .
atanj__zi: iV

whereV; has been defined in E¢6). The functiond ({n})

If we limit the development ofb around its minimum to
second order, then

1 ~ ~
PN} =3 2 [0~ O]y (O - A0

If, moreover, we boldly extend the variation domain of the
populations toRN, we can write the probability of the con-

being minimum a{n}, the matrix of its second-order deriva- figuration{n} in the continuous model as

A0 = e

which is the Gaussian approximation of Sec. Ill.

1/2 1
) exp =5 2 [ni=f(®]y(OIn-fD],

A different way to calculate probabilities is to subtract first the continuous ent8fpn}) from ®({n},t) to get an

approximate quadratic expression for the functi(@n},t):
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1 ~ | ~ ~
AdnE D=3 2 [0 =01 @yt - m}[nj—njmhg [ni—Ai(t)]in

D;—fi(t)
ni(t)

plus a constant term, and then use it in the discrete statisti§; =n,,, D,/(D,+D,), which is the same as the average. The

formula (16), as in Sec. IV. variance calculated in the Gaussian approximation is
-1
VI. NUMERICAL TESTS poc 0 D B T )
ni(D—ny) Ny(D—ny)

Two-level system
D1D5(D1+Dy— Ny

When the number of configurations allows it, the exact =Nyt 3
calculation using the master equati@®) can be performed. (D1+Dy)
This provides a benchmark to test the various models. Gom%hich is smaller than the exact one by a factor (D,
to the simplest case, we test our models on a two-level SEE )
tem with a total number of electrons constant and equal to 2"

N1+ No=Nygt. Three calculations

The simplicity of this model may seem too restrictive.
There is really only one population, but also only one aver-
age population {n,)+{n,)=ny,), and one most-probable
population @i;+n>=n,y). Since n,—(ny)=—(n;—(Ny)),
there is only one variance, which is also the correlation of th
two populations:

We now compare the following calculations.
Theexactone consists of integrating numerically the mas-
ter equation(2) for all possible configurations. Thus, the
Jrobability of each configuration is obtained at each time
step. The averagé,) and the correlation of the two popu-
lationsC,, are then calculated afterwards by summing on all

a?=((ny—=(n))?={(n—(ny))?) configurations.
The discrete modetonsists of integrating equatiofi2l).
= —{(n1=(n1))(N2—(N2))). The rates of change of the coefficients are calculated from a

As seen from the above equation, a system with a con§et of equations such as E9), written for a sufficient

stant total number of particles is always correlated. Hencer,]umber of configurations. The developmentAdfn}.t),

the model is not suited to study independent electrons. Inthe  A— A +a;n; +a,n,+ 1pyan3+ 3b,on3+boonyny,

atomic physics of plasmas, the total number of bound elec-

trons is not fixed and, at high temperature, the equilibriumapparently depends on six coefficients. In fact, only three of

distribution of the electrons among the various levels is arthem are relevant, sincg can be written(up to an additive

uncorrelated binomial law. There is no such thing in theconstant as

model considered, and this rules out the simplest results as- . 5
A=[a;—az+ (b= b)) NNy + 3(b13+bo—2b5) N7

sociated to the binomial distributigthe average is given by

Fermi-Dirac formula, the variance is equal )(D  The set of equations to be solved is thus constructed using
—(n))/D, and they are equal to the most probable populayree distinct configurations. We chose the integer configu-
tions of the continuous model and to the variance of thgation that is the closest to the most probable one, and the
Gaussian approximation _ two integer configurations that are the closest to this first
Instead, at very high temperature, the system we considgjne The average and the variance are then calculated using
follows a “hypergeometric” law ([21], formula 26.1.21  he discrete probability16).
with an average and a variance exactly equal to In the continuous mode{Secs. Il and V the evolution
equation(14) for the most probable population of level 1,
(n)=n D o2=n DiD; Dyt DNy a (A4 P Pop
V=tp +D,’ ©'(D,;+D,)? D;+Dy,—1 " d

at N1=Vi=ny(D1—N1) 71— Ny (D1—N3) 715,

Also, the most probable population observed at high
temperature in the continuous model is equal toand the only relevant equation in the set of equatidrss,

d N, vV, R PN o )
gt (@ut 0z~ 2wy =2 o, an, (w11t = 2w1p) —[N1(Da—N3) 7y 5+ Na(D1—Np) 7 g ](wnt =205,

are integrated numerically. The quadratic approximation to the fundtigim},t) is (up to an additive constant

O ({n},t) =3 w13(N;—N1) 2+ Fwol(Ny—15) %+ w1(Ny = N1) (N = M3) = 3 (w11 + W~ 2w1p) (N — )%
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The variance in th&aussian approximatiors therefore 1/p11+ woo—2w15).
To compare the continuous model with the two others, we translate its results into a discrete formalism. We first reconstruct
A({n},t) from ®({n},t) by subtracting the continuous entropy:

a(D1— M)
ni(D,—ny)

1

2

)2

) (nl_nl) .

D,y D,
w11+ Woo— 2(1)12_ =

A({n},t)=(n;—My)In A(D,—hy) hy(Do—hy

The average and the variance are then calculated using the that case, only the Gaussian approximation variance devi-
discrete probability (16). We call this procedure the ates from the exact result.
continuous-discretenodel. The results are more different in the following caség.
2):
Parameters used

. L U;=-10, U,=0, Vp3=Vp=0, V=1,
We use a quadratic total energy, which is necessary for

the discrete model to reach equilibrium exactly: D,=D,=ny=6
- —hot™ Y

E({n})=Un;+Uon,+ (VN2 + Voon3+Vosniny).
{ } 1 20121 2 1111 22112 1211112 Ti=100, Tf:]_.

Due to the simplicity of the model, the only relevant param-

eters arel; — Un+ (V10— Voo Nige aNd Vg + Vay— 2V The choiceplz D,=n;, makes level 1 full when_level 21is
The system is defined byj) the degeneracies of the two €MPty, which enhances the effect of transitions(D,
levels(D, andD,) and(ii) the total number of electromg,,, ~ — M) 72—1. So does the rapid coolin@;=100,T¢=1). The

which remains constant. The cases that we study are defin@jobable populations are then markedly different from the
by (i) the initial distribution. We suppose that the initial dis- averages when a level is almost fudir almost empty. The
tribution corresponds to a thermodynamic equilibrium re-variance of the continuous model has difficulty following the
lated to an initial temperaturE, . (i) The temperaturd, of ~ €volution. _ o

the free electrons, which is also the final temperature. It will A case of rapid heatin¢Fig. 3),

be kept constant throughout the simulatigiii) The transi-

tion rates. We assume the form Variance or correlation

1 F{ )() 1
Tio=—€Xp —=|, To_1—=—,
1—-2 X -|-f 2—1 X

where y=E,—E; is the transition energy. This transition
energy is obtained by finite difference for both the exact and
the discrete model, and by derivative for the continuous
model. We choose level 1 with the smallest energy, sohat
is a positive quantity. These transition rates are simplified . . ' .
forms for transitions induced by collisions with free elec- 00 10 20 80 Time 2
trons[22].

Since there is only one mechanism for the transitions
(there are no radiative transitions, for examptds useless
to specify the energy unit, or a multiplicative factor for the T
rates. These constants would simply change the time unit. 5 & 4

Population

Results

Let us first stress that the averages and correlations calcu-
lated with both models are most of the time quite close to the T 7]
exact quantities. In this section, we insist on the cases that o , . , :
showed significantly different behaviors. The sometimes 0.0 1.0 20 3.0 40
large differences that we present should not be generalized. Time

An ordinary case is given, for instance, in Fig. 1:

FIG. 1. Standard caséa) Variance of the population®: “ex-
U;=-10, U,=0, Vy;;=Vy=0, V=1, act” calcu_lation;+: discrete model¥: contin_uous-discrete model;
X: Gaussian modelb) Lower level population®: average popu-
lation (“exact” calculation); +: average population(discrete
mode); *: average populatiofcontinuous-discrete modelX: ref-
erence population of the discrete model; most probable popula-
T,=2, T;=200. tion (continuous modél

D1:6, D2=10, nt0t=8,
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0.5

Variance or correlation
1.0 =

0.5 + -

a/
a/
0.
) ‘ ® | \ : ;
0 ] 80 0. 9. 2. 3. 4. 5.
Time Time
Population Population
v 1.0
5 1 7
05 1+ 7
4. N
b/
b/
> 20 ® '
0 ] 80 0 1 2. 3 4 S.
Time Time

FIG. 2. Rapid cooling.(a) Variance of the populationgb)

FIG. 3. Rapid heating(a) Variance of the populationsb)

Lower level population. Curve markers are as on Fig. 1. Lower level population. Curve markers are as in Fig. 1.

Up=-10, U;=0, Vy=V5=Vp=0, VIl. CONCLUSION

D1=D2=Nw=6, We have presented two derivations of the same set of
equationg14) and(13) or (15), able to describe atomic sta-
tistics off equilibrium in an average-ion model. The calcula-
yields a discontinuity in the time derivative of the correlation tion of the most probable configuration, using £td) with
calculated in the discrete model. The discontinuity occurdd. (6), is what is already done by existing non-LTE
when the model changes the configurations it uses to corfiverage-ion codet,5,15,23. The set of equationgl3) or
struct the set of evolution equations. (15) with (9) for the matrix related to correlations is decou-

The same case, with a still more brutal heatifig=1, pled from the “average-ion” one, so that it can be solved
T;=100), shows a problem in the discrete distribution ob-afterwards. Equatiofil5), which gives an approximation of
tained from the continuous modéFig. 4). The continuous the covariance matrix, is linear, thus relatively easy to solve.
model is of course continuous, but the modification intro- Equations(14) and (15) have the same form as Eq§3)
duced to resume a discrete statisigsbtract the continuous and (10) for the “true” averages and covariance matrix,
entropy and add the discrete greas produced a probability which are obtained directly from the master equation by lin-
distribution that has sometimes a second maximum. There iéarizing the transition ratqgj]_ Note that the same general
therefore the danger of extrapolating a quadratic approximaorm of equations is known in different contexts such as
tion far from the reference configuration. linear Gaussian noise theofsee[24], Sec. 5. They can also

The last case we have retain@dg. 5), be obtained from a Fokker-Planck modelee [10], Sec.
VIII-6, and Appendix of the present paper

In addition, a model has been set up that integrates the
coefficients of a second-order polynomial of discrete popu-
lations, relying on a continuous model only to define a ref-
erence configuration.

A major achievement of these models is that they success-
shows that the models can handle correctly small degenerdlly reproduce the probability distribution of thermody-
cies. It should be noted that with only three configurationshamic equilibrium, when external conditions make it pos-
the discrete model is exact in that case. sible. This property is stronger than obtaining either the

Let us recall once more that the variance in the Gaussiaaverage population or the most probable one, which is the
approximation would be much more accurate if the totalresult usually obtained with existing off-equilibrium
number of electrons was allowed to fluctuate. average-ion models.

T,=2, T;=200,

U;=-10, U,=0, V33;=V,o=Vy,=0,
D;=Dy=n=2,

Ti:21 Tf:200,
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Variance or correlation Variance or correlation
0.4

1.0 + .

0.5 4 02 + =

a/ al -

0. . " " " 0.0

0. 1. 2. 3. 4. 5.
Time 0. 5. Time 10.

Population Poputation

b/

i 5. 3 3 )
Time Time

FIG. 4. Still more rapid heating; the continuous model fas. FIG. 5. Low degeneracy@ Variance of the populationgb)
Variance of the populationgb) Lower level population. Curve Lower level population. Curve markers are as in Fig. 1.
markers are as in Fig. 1.

Numerical applications using two-level systems haveautoionization[27]. Taking them into account would be a
shown a good agreement between our models and exact cahajor step towards improving off-equilibrium atomic phys-
culations. Certain dangers have been pointed out. ics models.

To give an idea of the progress expected from the pro-
posed technique, we can recall the simplifications made in
the existing non-LTE atomic physics codes. For instance, APPENDIX: FOKKER-PLANCK EQUATION
Limeil’s nonequilibrium screened-hydrogenic average-ion
model Nohe[23] (similar to Livermore’sXSN[4]), assumes
a Gaussian approximation with a matrix similar to its LTE
form,

The variation domain for the populations being extended
to RN, let us consider the Fokker-Planck equatja0]

2

d d 1
g PUnhD==2 S (ViP)+ 5 2 (B P).

D; 1 ﬁ/z\E i i &niﬁnj

wij=06j =~ — =t — ;
ni(Di ni) Te &ni&nj
The average of a functiok({n}) of the populations is de-

) fined as
whereT, is the temperature of free electrons. The non-LTE

model Radion{25] often used in Limeil, relies on the con-

cept of an “ionization temperatureT;; it thus effectively

uses a LTE-like approximation, with a different temperature.

The non-LTE average-atom model of Rozsny28] assumes

also a LTE distribution of states at temperatlite The use o ) o —

of an evolution equation to describe correlations should yieldvhile_its value at the average configuration is denoed

more reliable results than these rough approximations.  =X({n}), nj=(n;). In particular, the evolution equations for
Moreover, dielectronic recombination and Auger effectthe average populatior(s)), and for the correlations or co-

can be included in our model, as any other transition rate capariances

be. Although they are two-electron transitions, similar evo-

lution equations can be derived. In particular, in the continu- = i /n AW/ N A

ous model, uncoupled equations liki4) and (13) or (15) Ei == (i) (n;—(np)))=(ninj) —(ni}(n;),

are obtained. Correlations are known to be particularly im-

portant in describing these two phenomena. The lack of are obtained after integration by parts. It is essential for this

proper description of correlations has been a major difficultythat the probability vanish at the border of the domain. The

in a statistical treatment of dielectronic recombination andesults are

9= [ dpcinpxcn),
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d After linearization of the function¥; andB;; around the
at (n)y=(Vi), average configuration, the approximatiof¥ and (10), or
(14) and(15), are obtainedlseg[10], Chap. VI, Eq.(6)—(9)
q for linear Fokker-Planck moddls
= N n —in. e n. - However, the analogy should not be pushed too far, be-
dt ~Y Vilm =)+ Vi(ni = (i) + By), cause the Fokker-Planck equation seems difficult to write
down explicitly in our case: one would have to decide how to
which are identical in form to the corresponding equationsextend the transition rates;(D;—n;)7_,; outside the do-

(5) and (8) derived from the master equation. main 0<n,<D,.
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