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Average-ion level-population correlations in off-equilibrium plasmas
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We present techniques to calculate statistical distributions in time-dependent off-equilibrium atomic physics.
Starting from the master equation, a first method assumes a Gaussian distribution and deduces the time
evolution of the means and correlations. Alternatively, the discrete probability distribution is written as the
product of the known statistical factor with the exponential of an unknown function. This function of the
electronic populations can then be fitted using a second-order polynomial. Another method sets up a continu-
ous version of the master equation, then expands the probability around the most probable configuration. It is
remarkable that the obtained equation set is the same as in the Gaussian approximation of the first method. A
major property of all these models is that they recover the probability distribution of thermodynamical equi-
librium, when external conditions make it possible. Numerical tests on a two-level system are presented.
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I. INTRODUCTION

Simulations of laboratory and astrophysical plasmas n
absorption and emission spectra of highly charged ions
many different conditions. Among the atomic physics mo
els, we can separate those that use a discrete descripti
matter from those that use a continuous one. The former
consistent with the quantum reality of matter, but they
often difficult to use, due to the enormous number of sta
that should be taken into account. Much simplification
needed, and this is usually done by means of a continu
model such as an average ion@1–5#, which calculates mean
values. As for two-electron correlations, well-establish
methods@6–9# are used when thermodynamical equilibriu
~LTE! prevails, but little has been done to tackle them out
equilibrium @6#; this is the problem we want to address.

The models that describe time-dependent off-equilibri
statistics rely on the master equation~see@10#, for instance!.
This equation describes the evolution of the statistical dis
bution of probabilities under the action of microscopic pr
cesses. In this paper we present several attempts to o
from the master equation a practical description of the sta
tics of plasmas off-equilibrium. A first method assumes
Gaussian distribution of probabilities and deduces the t
evolution of the mean values and correlations of populatio
A second one, extending the expression valid at thermo
namic equilibrium~LTE!, writes the probability of a configu
ration $n% as

P~$n%,t !5W~$n%!exp@2A~$n%,t !#,

whereW($n%) is the known statistical factor, andA($n%,t) is
a function to be determined. Assuming that this function
the populations is a second-order polynomial, we get
time evolution of the coefficients of this polynomial from th
master equation. A third method constructs a continuous
sion of the master equation, and the solution is develo
571063-651X/98/57~1!/1017~12!/$15.00
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around the most probable one. It is quite remarkable that
obtained equations are the same as in the Gaussian app
mation.

The paper is organized as follows. The formulation of t
master equation in the framework of an exact discrete sta
tics is recalled in Sec. II. In Sec. III, the Gaussian appro
mation is made. In Sec. IV, we present the aforementio
discrete approximation. The continuous model, which can
used either as such, or to find a discrete statistics, is
scribed in Sec. V. In Sec. VI, the time evolution generated
the three models is compared numerically on two-level s
tems. Section VII is the conclusion.

II. MASTER EQUATION

Consider an atom havingN electronic levels with integer
degeneraciesDi . A configuration$n% is defined as a set o
integer occupation numbers of these levelsn1 ,n2 ,...,nN
~also called populations!. In addition to theseN bound levels,
there is a continuum of free electrons denotedc.

The evolution of the probability distributionP($n%,t) of
the various configurations is driven by the master equa
@10,11#

]

]t
P~$n%!5(

$m%
P~$m%!R$m%→$n%2P~$n%!(

$m%
R$n%→$m% ,

whereR$m%→$n% is the rate of transitions from a configuratio
to another one. Physically, the transitions arise from inter
tions with external sources~such as collisions with free par
ticles, absorption or emission of light!.

Here we only consider one-particle transitions: boun
bound transitionsi→ j , ionizations i→c, and recombina-
tions c→ i . The rate of transitions between configuratio
can then be written in terms of transition rates between l
els:
1017 © 1998 The American Physical Society
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R$m%→$n%5(
i 51

N

(
j 51

N S )
kÞ i , j

dmk ,nkD dmi ,ni21dmj ,nj 11Tj→ i~$m%,t !1(
i 51

N S)
kÞ i

dmk ,nkD @dmi ,ni21Tc→ i~$m%,t !

1dmi ,ni11Ti→c~$m%,t !#.

Following an established usage, we write the ratesT($n%) as functions of theinitial configuration of the transition. An obviou
convention isTi→ i[0.

The number of electronsni in the departure level and the number of holes (D j2nj ) in the arrival level can be factored ou
to recall that there is no transitionj→ i starting from an empty levelj , or going to a full leveli :

Ti→ j~$n%,t ![ni~D j2nj !t i→ j~$n%,t !,

Ti→c~$n%,t ![nit i→c~$n%,t !, Tc→ i~$n%,t ![~Di2ni !tc→ i~$n%,t !. ~1!

The reduced ratest i→ j , t i→c , andtc→ i generally depend both on populations and on time.
The master equation is then

]

]t
P~$n%!5(

i , j
P~$m1%!Tj→ i~$m1%!1(

i
P~$m2%!Tc→ i~$m2%!1(

i
P~$m3%!Ti→c~$m3%!2P~$n%!F(

i , j
Tj→ i~$n%!

1(
i

Tc→ i~$n%!1(
i

Ti→c~$n%!G , ~2!
re

.

el
la

ce

ion

r-

tia
n

ch

e

er-

tity
where the initial configurations of the transitions are ca
fully distinguished:

$n%5~nkÞ i , j ,ni ,nj !, $m1%~nkÞ i , j ,ni21,nj11!,

$m2%5~nkÞ i ,ni21!, $m3%5~nkÞ i ,ni11!.

Thermodynamical equilibrium

The total energyE($n%) is a function of the configuration
For instance, the screened-hydrogenic model@8,12# assumes
it is a third-order polynomial. Quantum-mechanical mod
of the atom lead to second-order polynomials in the popu
tions @13,14#, with coefficients depending on a referen
configuration.

When the external sources responsible for the transit
are in thermodynamical equilibrium at temperatureT and
chemical potentialm, the reduced rates verify the micro
eversibility relations

t i→ j~$n%!expF2
1

T
E~$n%!G

5t j→ i~$m1%!expF2
1

T
E~$m1%!G ,

t i→c~$n%!expF2
1

T
E~$n%!G

5tc→ i~$m2%!expF2
E~$m2%!2m

T G . ~3!

On each side of these equalities is a rate, with the ini
configuration of the transition, and the energy of that co
-

s
-

s

l
-

figuration. Such microreversibility relations exist for ea
kind of rate~detailed balance principle!, each pair of levels,
and each configuration.

If these relations hold, the LTE distribution

P~$n%!5
1

Z S )
i

Di !

ni ! ~Di2ni !!
D expH 2

1

T FE~$n%!

2m(
i

ni G J , ~4!

where the statistical weight~equal to the degeneracy of th
configuration! is factored out, and whereZ is a normalization
factor, is a steady-state solution of the master equation~2!.

Evolution of average populations and correlations

Let us now consider the evolution equation for the av
age populations

^ni&5(
$n%
P~$n%,t !ni .

The notation̂ X& means the statistical average of the quan
X($n%):

^X&5(
$n%
P~$n%,t !X~$n%!.

From Eq.~2!, we obtain

d

dt
^ni&5^Vi&, ~5!

where
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Vi[Tc→ i2Ti→c1(
j

~Tj→ i2Ti→ j !

[~Di2ni !tc→ i2nit i→c1(
j

@nj~Di2ni !t j→ i

2ni~D j2nj !t i→ j #. ~6!

So far, this equation has been the best justification for
non-LTE average-ion methods@4#. In an off-equilibrium
average-ion calculation, the transition ratesTi→ j are func-
tions of the populationsni considered as continuous var
ables. A first approximation consists of using ‘‘averag
ratesTi→ j , independent of the configurations, calculated,
example, by using average populations. For any func
X($n%) of the populations, we now denote byX̄ its value at
the average configuration:X̄[X($n̄%), ni[^ni&. The evolu-
tion equation~5! can then be recast as
u

f

on

;
.
e

n
ur
on
e

’
r
n

d

dt
ni.V̄i , ~7!

which is the set of equations actually solved in the non-L
average-ion codes@4,5,15#. The electroneutrality of the
plasma is ensured by the constraint( i^ni&1Z* 5Z, whereZ
is the nuclear charge, and whereZ* can be calculated ana
lytically @5,9,16#.

Equation~2! also yields

d

dt
^ninj&5^niVj1njVi1Bi j &, ~8!

where
Bi j [2Ti→ j2Tj→ i1d i j FTc→ i1Ti→c1(
k

~Ti→k1Tk→ i !G
[2ni~D j2nj !t i→ j2nj~Di2ni !t j→ i1d i j H ~Di2ni !tc→ i1nit i→c1(

k
@ni~Dk2nk!t i→k1nk~Di2ni !tk→ i #J .

~9!
y
ccu-
-

can

ate

s
l of
for
Linearizing the continuous rates around the average pop
tions

T~$n%!.T̄1(
i

]T

]ni
~ni2^ni&!,

Mirone et al. @17# get an equation for the time evolution o
the correlation or covariance matrix

J i j [^~ni2^ni&!~nj2^nj&!&5^ninj&2^ni&^nj&,

which we write in the form

d

dt
J i j .(

k

]Vj

]nk
Jki1(

k

]Vi

]nk
Jk j1Bi j . ~10!

Linearizing the transition rates around the average c
figuration thus yields a somewhat simple set of equations~7!
and~10! that must be solved self-consistently. Equation~10!
being decoupled from Eq.~7!, it can be solved afterwards
being linear in the unknownsJ, it is relatively easy to solve
However, a linear approximation of the rates may seem qu
tionable, if only because bound-bound rates~1! have a
built-in second-order factor:Ti→ j[ni(Di2nj )t i→ j . But, if
rates were developed to second order, the time evolutio
the average would depend on correlations, which in t
would depend on higher-order correlations. Such situati
are known to be difficult.
la-

-

s-

of
n
s

III. GAUSSIAN PROBABILITY

Equation ~2! is too general to be practical for highl
charged ion plasmas. We therefore assume continuous o
pation numbers$n% instead of integer values, a ‘‘large num
bers hypothesis,’’ and we neglect orbital relaxations. We
then rewrite Eq.~2! as

]

]t
P~$n%!.(

i , j
P~$m1%!Tj→ i~$n%!

1(
i
P~$m2%!Tc→ i~$n%!

1(
i
P~$m3%!Ti→c~$n%!2P~$n%!

3F(
i , j

Tj→ i~$n%!1(
i

Tc→ i~$n%!

1(
i

Ti→c~$n%!G . ~11!

We now propose a heuristic argument to find an approxim
solution to this equation. Writing

P~$ma%,t !5exp@2S~$ma%,t !#, 1<a<3,

a Taylor expansion ofP($ma%,t) in the occupation number
around a reference configuration is performed. At the leve
approximation required here, we retain the first order
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S($ma%,t), or equivalently the second order inP($ma%,t)
while neglecting any second derivative ofS($ma%,t) with
respect to populations. The motivation of these assumpt
is the compatibility with LTE, which will appear clearly
later. For the applications we have in mind, and followi
previous work@8,9,18#, we consider a Gaussian approxim
tion:

P~$n%,t !5expF2
1

2 (
i , j

Dni~ t !v i j ~ t !Dnj~ t !G ,
where Dni(t)5ni2n̂i(t). The reference populationsn̂i(t)
.^ni& are still unknown but near the average ones. The tim
dependent symmetric matrix@v i j (t)# is an estimate of the
electron correlations: (v21) i j (t)'^Dni(t)Dnj (t)&'J i j .

Starting from Eq.~11! we can write (] i[]/]ni)

]

]t
P5(

i , j
@] jP2] iP1 1

2 ~] i i
2P1] j j

2 P22] i j
2P!#Tj→ i~$n%!

1(
i

@~2] iP1 1
2 ] i i

2P!Tc→ i~$n%!

1~] iP1 1
2 ] i i

2P!Ti→c~$n%!#.

Replacing the Gaussian estimate in this equation and u
] i j

2P'(k,l(Dnkvki)(Dnlv l j )P, equations for the first and
second order inDnk are obtained. The first order is

(
i

vkiS d

dt
nî2V̂i D50, ~12!

whereVi has been defined in Eq.~6!, andX̂ is a notation for
X($n̂%). The second order yields

2
d

dt
vkl5(

i

]Vî

]nl
v ik1(

i

]Vî

]nk
v i l

1(
i

~Tc→ î1Ti→ ĉ!v ikv i l

1(
i , j

Tj→ î~v ik2v jk!~v i l 2v j l !. ~13!

If the matrix v is nonsingular, we find that the popula
tions $n̂% satisfy the non-LTE average-atom equatio
@4,5,15#, already seen as Eq.~7!:

d

dt
nî5V̂i . ~14!

The evolution equations~13! for (vkl) are nonlinear. How-
ever, it is the matrixC, inverse ofv, which is of physical
interest since it gives an estimate of two-electron corre
tions. Extending the range of continuous occupancies tR
ns

-

ng

-

~instead of@0,Di #!, the matrixC is the covariance matrix
related to the Gaussian probability. The classical theory
fluctuations extends the Gaussian approximation to any fu
tion of the populations. The variance of a functionX($n%) is
then

sX
25(

i , j

]X

]ni
Ci j

]X

]nj
.

Hence, the covariance matrixC is in fact more useful than its
inversev.

Using the matrix identity

d

dt
Ci , j52(

k,l
CikS d

dt
vklDCl j ,

we obtain thelinear evolution equation

d

dt
Ci j 5(

k

]Vî

]nk
Ck j1(

k

]Vĵ

]nk
Cki1Bi ĵ , ~15!

identical in form to Eq.~10!, whereBi j has been defined in
Eq. ~9!. The Gaussian ansatz to the solution of the mas
equation thus leads to a set of equations~14!, ~15! having the
same form as Eqs.~7! and ~10!.

The parameters of the Gaussian probability at LTE ha
been found to be@8,9,18#

nî5
Di

11exp@~1/T!~]E/]nî2m!#
,

v i j 5d i j

Di

nî~Di2nî !
1

1

T

]2Ê

]ni]nj
.

One can check that these are indeed solutions of Eqs.~14!
and ~13! when appropriate microreversibility relations a
satisfied.

IV. APPROXIMATION OF A DISCRETE NON-LTE
DISTRIBUTION

Principle

Taking the equilibrium distribution~4! as a model, we
write the probability of a discrete configuration as

P~$n%,t !5S )
i

Di

ni ! ~Di2ni !!
D exp@2A~$n%,t !#, ~16!

where the known statistical weight is factored out, and wh
A($n%,t) is a function of the populations and of time to b
determined.

Using this form ofP($n%) and the reduced rates~1!, the
master equation~2! becomes
2
]A

]t
~$n%!5(

i , j
ni~D j2nj !ˆt j→ i~$m1%!exp@A~$n%!2A~$m1%!#2t i→ j~$n%!‰1(

i
niˆtc→ i~$m2%!exp@A~$n%!

2A~$m2%!#2t i→c~$n%!‰1(
i

~Di2ni !ˆt i→c~$m3%!exp@A~$n%!2A~$m3%!#2tc→ i~$n%!‰, ~17!
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where

A~$n%!2A~$m1%!5A~nkÞ i , j ,ni ,nj !

2A~nkÞ i , j ,ni21,nj11!,

A~$n%!2A~$m2%!5A~nkÞ i ,ni !2A~nkÞ i ,ni21!,

A~$n%!2A~$m3%!5A~nkÞ i ,ni !2A~nkÞ i ,ni11! ~18!

are finite differences of the functionA of the integer popu-
lations $n%. This new form~17! of the master equation i
mathematically equivalent to the original one~2!.
t

q

se
.

on

re
re
We now perform an approximation. We assume thatAis a
second-order polynomial in the populations. The dynam
of the statistics is then described by the time dependenc
the coefficients of this polynomial. Let us writeA as

A~$n%,t !5A0~ t !1(
i

ai~ t !ni1
1

2 (
i , j

bi j ~ t !ninj .

For each configuration, equation~17! is a linear relation sat-
isfied by the (N213N12)/2 unknowns dA0(t)/dt,
dai(t)/dt, anddbi j (t)/dt. It is written as
dA0

dt
1(

i

dai

dt
ni1

1

2 (
i , j

dbi j

dt
ninj5(

i , j
ni~D j2nj !@t i→ j~$n%!2t j→ i~$m1%!eA~$n%!2A~$m1%!#1(

i
ni@t i→c~$n%!

2tc→ i~$m2%!eA~$n%!2A~$m2%!#1(
i

~Di2ni !@tc→ i~$n%!

2t i→c~$m3%!eA~$n%!2A~$m3%!#, ~19!
r of
ns

ons
rify

ra-
rs

o-
where

A~$n%!2A~$m1%!5ai2aj1
1

2
~2bi j 2bii 2bj j !

1(
k

~bik2bjk!nk ,

A~$n%!2A~$m2%!5ai2
1

2
bii 1(

k
biknk ,

A~$n%!2A~$m3%!52ai2
1

2
bii 2(

k
biknk . ~20!

Choosing (N11)(N12)/2 distinct configurations such tha
the set of linear equations@the left-hand-side of Eq.~19!# is
nonsingular, evolution equations are obtained:

d

dt
ai5Fi ,

d

dt
bi j 5Gi j . ~21!

A0(t), which does not appear on the right-hand side of E
~19!, is kept for normalization.

The problem with this method is that the ratesFi andGi j
depend on the configurations that are chosen. We propo
choose the configurations among the most probable ones
that aim, we first perform an average-atom calculati
which yields a noninteger reference configuration:

n1̂5
Di

11exp~]A/]nî !
.

We then retain the integer configurations that are nea
neighbors to the reference one. Hence, we obtain a disc
s.

to
To
,

st
te

description of the statistics that uses a moderate numbe
dynamical quantities and still takes electronic correlatio
into account.

Thermodynamical equilibrium

When the external sources responsible for the transiti
are in thermodynamical equilibrium, the reduced rates ve
the microreversibility relations~3!, and

A~$n%!5
1

T FE~$n%!2m(
i

ni G
is a stationary solution of the master equation~17!.

Using a Taylor expansion around the average configu
tion, limited at order two with respect to occupation numbe
@7#, the energy is written as

E~$n%!5E01(
i

Uini1
1

2 (
i , j

Vi j ninj .

With

ai5
Ui2m

T
, bi j 5

Vi j

T

the right-hand side in the set of equations~19! is equal to
zero. Because this linear set is nonsingular~the configura-
tions are chosen accordingly!, the stability condition

d

dt
A050,

d

dt
ai50,

d

dt
bi j 50,

is satisfied. The model is therefore compatible with therm
dynamic equilibrium.
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V. APPROXIMATION OF A CONTINUOUS NON-LTE
DISTRIBUTION

We now construct a continuous model with noninteg
populations. By ‘‘construct,’’ we mean ‘‘define the bas
constituents’’ from which everything else will be deduc
exactly. Thus, we consider a configuration$n% defined by a
set of noninteger populationsn1 ,n2 ,...,nN of the various
electronic levels (0<ni<Di).

The total energyE($n%) of the ion is now a continuous
function of the populations~a second-@2,7# or a third-order
polynomial as in the screened-hydrogenic model@8,12#!. The
partial derivatives ofE($n%) with respect to populations ar
interpreted as the energies of the levels, and we denote t
Ei($n%):

Ei5
]E

]ni
.

The energy of transitionsi↔c or i↔ j are defined from the
level energies; they are derivatives of the total energy,

Ei5
]E

]ni
, Ei2Ej5

]E

]ni
2

]E

]nj
,

instead of the finite differences of the discrete cases. To
preciate the approximation thus made, note that there is
exact correspondence at some intermediate ‘‘half-integ
points @19,20#:
s

rs
e

r’’
rg

is
ra
m

t

r

em

p-
an
’’

S ]E

]ni
D

$nkÞ i ,ni21/2%

5E~$nkÞ i ,ni%!2E~$nkÞ i ,ni21%!,

S ]E

]ni
2

]E

]nj
D

$nkÞ i , j ,ni21/2,nj 11/2%

5E~$nkÞ i , j ,ni%!2E~$nkÞ i , j ,ni21,nj11%!,

if the total energy is a second-order polynomial of the pop
lations.

Continuous version of the master equation

Unlike the standard LTE procedure used to define a c
tinuous extension of a discrete statistical model~i.e., the
mean-field approximation@7–9#!, we proceed by defining a
continuous extension of the master equation~17!. This equa-
tion is ‘‘non-local’’ in the configuration space, since the ra
of change at configuration$n% depends onN(N11) neigh-
bor configurations. It appears slightly simpler if the transiti
rates are indexed by the intermediate ‘‘half-integer’’ co
figurations: only then are the configurations that index
up-rate and the down-rate the same. Changing the finite
ferences ofA into derivatives, writing all terms at the sam
configuration $n% instead of the various ‘‘half-integer’’
neighbors, a ‘‘local’’ approximation to the master equati
~17! is obtained:
2
]A

]t
5(

i , j
ni~D j2nj !Ft j→ i expS ]A

]ni
2

]A

]nj
D2t i→ j G1(

i
niFtc→ i expS ]A

]ni
D2t i→cG

1(
i

~Di2ni !Ft i→c expS 2
]A

]ni
D2tc→ i G . ~22!
ies
ole

st

-

The microreversibility compatible with this continuou
model is an equality betweenfunctions of the continuous
populations$n%:

t i→ j~$n%!5t j→ i~$n%!expFEi~$n%!2Ej~$n%!

T G ,
t i→c~$n%!5tc→ i~$n%!expFEi~$n%!2m

T G . ~23!

To implement this definition of the continuous microreve
ibility, we must interpolate the rates of the discrete mod
which are only defined in the intermediate ‘‘half-intege
configurations, and modify one of the rates if the total ene
is not a polynomial of degree two.

The equality~23! between functions of the populations
satisfied when the external sources responsible for the t
sitions have reached thermodynamic equilibrium at a te
peratureT with a chemical potentialm. It is easily seen tha
the stationary solutions of the master equation~22! are then
-
l,

y

n-
-

]A

]ni
5

Ei2m

T
.

Thus, the microreversibility relations, extended to equalit
~23! between functions of the populations, make the wh
statistical distribution of fluctuations at equilibrium~4! a
consequence of our continuous master equation~22!. This
very strong property~stronger than recovering the mo
probable configuration, for instance! is the best support for
the off-equilibrium continuous model presented.

Replacing, in Eq.~16!, the entropy term due to the con
figurations~i.e., the product of combinatorial factors! by its
usual continuous counterpart

S~$n%!52(
i

Fni lnS ni

Di
D1~Di2ni !lnS Di2ni

Di
D G ,

we write the probability of a noninteger configuration as

P~$n%,t !5
1

Z~ t !
exp@2F~$n%,t !#,
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where

F~$n%,t !52S~$n%!1A~$n%,t !

is a kind of free energy, and where the partition functi
Z(t) is the normalization factor. From Eq.~22!, and using
the definitions~1!, we deduce an equivalent master equat
for F:

2
]F

]t
5(

i , j
FTj→ i expS ]F

]ni
2

]F

]nj
D2Ti→ j G

1(
i

Tc→ iFexpS ]F

]ni
D21G

1(
i

Ti→cFexpS 2
]F

]ni
D21G . ~24!

Kinetics of the most probable populations

The most probable populationsnî are solutions to the se
of equations

]F

]ni
5 lnS ni

Di2ni
D1

]A

]ni
50. ~25!

We assume here thatF has a true and unique minimum
other cases are beyond the scope of this paper. For any f
tion X($n%) of the populations, we now denoteX̂ its value at
the most probable configuration:X̂[X($n̂%).

The time evolution ofX̂ is obtained by taking a total time
derivative ‘‘following the motion’’:

d

dt
X̂5

]X̂

]t
1(

i

]X̂

]ni

d

dt
nî .

Applied to X̂5]F/]nĵ , which is constantly zero, this read

05
d

dt
S ]F̂

]nj
D 5

]

]t

]F

]nj

̂
1(

i
S ]2F̂

]ni]nj
D d

dt
nî .

These relations form a set of linear equations satisfied by
unknownsdnî /dt, with matrix v i j []2F/]n̂i]nj . The par-
tial derivatives of the master equation~24!, calculated at the
most probable configuration, are found to be

]2F̂

]t]nj
52(

i
v i j V̂i ,

whereVi has been defined in Eq.~6!. The functionF($n%)
being minimum at$n̂%, the matrix of its second-order deriva
n

nc-

e

tives is positive definite in that point, so that the solution
the linear system( iv i j @(d/dt)nî2V̂i #50 is zero, and the
evolution equation is just Eq.~14!. The kinetics~14! of the
most probable configuration is thus an exact consequenc
the master equation~24!. The equations of themost probable
ion ~14! have the same form as the usualaverage-ion equa-
tions ~7!.

As a particular case of thermodynamic equilibrium~pre-
ceding section!, the most probable populations, obtain
from Eqs.~25!, are given by the Fermi-Dirac formulas:

nî5
Di

11exp@~Êi2m!/T#
.

Statistics near the most probable configuration

We now consider the second derivatives of the mas
equation~24!, which are related to correlations. Followin
the same lines that were detailed in the previous subsec
we calculate the second derivatives (]/]t)]2F/]ni]nj of the
master equation~24!, then the total time derivatives
(d/dt)]2F/]ni]nj . Once evaluated at the most probab
configuration, we find that the equation for the symmet
matrix v i j []2F.]n̂i]nj has exactly the relatively simple
form ~13!.

The time-evolution equations~13!, as well as the kinetics
~14!, are thus exact consequences of the continuous ma
equation~24!. A nontrivial property is then easily obtained
if the rates satisfy the continuous microreversibility relatio
~23!, then

v i j 5d i j

Di

nî~Di2nî !
1

1

T

]2Ê

]ni]nj
,

which is the LTE result, i.e., the matrix of second derivativ
of F($n%)52S($n%)1(1/T)@E($n%)2m( ini #, is a station-
ary solution of equations~13!.

BecauseF($n%) is minimum in configuration$n̂%, the
matrix v of its second derivatives is positive-definite in th
point, so that it can be inverted. The evolution equation
the inverse matrixC5v21 is of course thelinear evolution
equation~15!.

If we limit the development ofF around its minimum to
second order, then

F~$n%,t !.
1

2 (
i , j

@ni2nî~ t !#v i j ~ t !@nj2nĵ~ t !#.

If, moreover, we boldly extend the variation domain of t
populations toRN, we can write the probability of the con
figuration$n% in the continuous model as
P~$n%,t !5S det~v!

~2p!N D 1/2

expH 2
1

2 (
i , j

@ni2nî~ t !#v i j ~ t !@nj2nĵ~ t !#J ,

which is the Gaussian approximation of Sec. III.
A different way to calculate probabilities is to subtract first the continuous entropyS($n%) from F($n%,t) to get an

approximate quadratic expression for the functionA($n%,t):
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A~$n%,t !.
1

2 (
i , j

@ni2nî~ t !#H v i j ~ t !2d i j

Di

nî~ t !@Di2nî~ t !#J @nj2nĵ~ t !#1(
i

@ni2nî~ t !# lnFDi2nî~ t !

nî~ t ! G
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plus a constant term, and then use it in the discrete stat
formula ~16!, as in Sec. IV.

VI. NUMERICAL TESTS

Two-level system

When the number of configurations allows it, the exa
calculation using the master equation~2! can be performed
This provides a benchmark to test the various models. Go
to the simplest case, we test our models on a two-level
tem with a total number of electrons constant and equa
n11n25ntot .

The simplicity of this model may seem too restrictiv
There is really only one population, but also only one av
age population (̂n1&1^n2&5ntot), and one most-probabl
population (n1̂1n2̂5ntot). Since n22^n2&52(n12^n1&),
there is only one variance, which is also the correlation of
two populations:

s25Š~n12^n1&!2
‹5Š~n22^n2&!2

‹

52Š~n12^n1&!~n22^n2&!‹.

As seen from the above equation, a system with a c
stant total number of particles is always correlated. Hen
the model is not suited to study independent electrons. In
atomic physics of plasmas, the total number of bound e
trons is not fixed and, at high temperature, the equilibri
distribution of the electrons among the various levels is
uncorrelated binomial law. There is no such thing in t
model considered, and this rules out the simplest results
sociated to the binomial distribution~the average is given by
Fermi-Dirac formula, the variance is equal tôn&(D
2^n&)/D, and they are equal to the most probable popu
tions of the continuous model and to the variance of
Gaussian approximation!.

Instead, at very high temperature, the system we cons
follows a ‘‘hypergeometric’’ law ~@21#, formula 26.1.21!
with an average and a variance exactly equal to

^n1&5ntot

D1

D11D2
, s25ntot

D1D2

~D11D2!2

D11D22ntot

D11D221
.

Also, the most probable population observed at h
temperature in the continuous model is equal
tic

t

g
s-
to

-

e

n-
e,
e

c-

n

s-

-
e

er

h

n1̂5ntot D1 /(D11D2), which is the same as the average. T
variance calculated in the Gaussian approximation is

s 2̂5S D1

n1̂~D2n1̂!
1

D2

n2̂~D2n2̂! D
21

5ntot

D1D2~D11D22ntot!

~D11D2!3 ,

which is smaller than the exact one by a factor 121/(D1
1D2).

Three calculations

We now compare the following calculations.
Theexactone consists of integrating numerically the ma

ter equation~2! for all possible configurations. Thus, th
probability of each configuration is obtained at each tim
step. The averagên1& and the correlation of the two popu
lationsC12 are then calculated afterwards by summing on
configurations.

The discrete modelconsists of integrating equations~21!.
The rates of change of the coefficients are calculated fro
set of equations such as Eq.~19!, written for a sufficient
number of configurations. The development ofA($n%,t),

A5A01a1n11a2n21 1
2 b11n1

21 1
2 b22n2

21b12n1n2 ,

apparently depends on six coefficients. In fact, only three
them are relevant, sinceA can be written~up to an additive
constant! as

A5@a12a21~b122b22!ntot#n11 1
2 ~b111b2222b12!n1

2.

The set of equations to be solved is thus constructed u
three distinct configurations. We chose the integer confi
ration that is the closest to the most probable one, and
two integer configurations that are the closest to this fi
one. The average and the variance are then calculated u
the discrete probability~16!.

In the continuous model~Secs. III and V! the evolution
equation~14! for the most probable population of level 1,

d

dt
n1̂5V̂15n2̂~D12n1̂!t2→1̂2n1̂~D12n2̂!t1→2̂,

and the only relevant equation in the set of equations~13!,
d

dt
~v111v2222v12!52S ]V1̂

]n2
2

]V1̂

]n1
D ~v111v2222v12!2@n1̂~D22n2̂!t1→2̂1n2̂~D12n1̂!t2→1̂#~v111v2222v12!

2,

are integrated numerically. The quadratic approximation to the functionF($n%,t) is ~up to an additive constant!

F~$n%,t !. 1
2 v11~n12n1̂!21 1

2 v22~n22n2̂!21v12~n12n1̂!~n22n2̂!5 1
2 ~v111v2222v12!~n12n1̂!2.
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The variance in theGaussian approximationis therefore 1/(v111v2222v12).
To compare the continuous model with the two others, we translate its results into a discrete formalism. We first rec

A($n%,t) from F($n%,t) by subtracting the continuous entropy:

A~$n%,t !.~n12n1̂!lnFn2̂~D12n1̂!

n1̂~D22n2̂!G1
1

2 Fv111v2222v122
D1

n1̂~D12n1̂!
2

D2

n2̂~D22n2̂!G~n12n1̂!2.
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The average and the variance are then calculated using
discrete probability ~16!. We call this procedure the
continuous-discretemodel.

Parameters used

We use a quadratic total energy, which is necessary
the discrete model to reach equilibrium exactly:

E~$n%!5U1n11U2n21 1
2 ~V11n1

21V22n2
21V12n1n2!.

Due to the simplicity of the model, the only relevant para
eters areU12U21(V122V22)ntot andV111V2222V12.

The system is defined by~i! the degeneracies of the tw
levels~D1 andD2! and~ii ! the total number of electronsntot ,
which remains constant. The cases that we study are de
by ~i! the initial distribution. We suppose that the initial di
tribution corresponds to a thermodynamic equilibrium
lated to an initial temperatureTi . ~ii ! The temperatureTf of
the free electrons, which is also the final temperature. It w
be kept constant throughout the simulation.~iii ! The transi-
tion rates. We assume the form

t1→25
1

x
expS 2

x

Tf
D , t2→15

1

x
,

where x5E22E1 is the transition energy. This transitio
energy is obtained by finite difference for both the exact a
the discrete model, and by derivative for the continuo
model. We choose level 1 with the smallest energy, so thx
is a positive quantity. These transition rates are simplifi
forms for transitions induced by collisions with free ele
trons @22#.

Since there is only one mechanism for the transitio
~there are no radiative transitions, for example! it is useless
to specify the energy unit, or a multiplicative factor for th
rates. These constants would simply change the time un

Results

Let us first stress that the averages and correlations ca
lated with both models are most of the time quite close to
exact quantities. In this section, we insist on the cases
showed significantly different behaviors. The sometim
large differences that we present should not be generaliz

An ordinary case is given, for instance, in Fig. 1:

U15210, U250, V115V2250, V1251,

D156, D2510, ntot58,

Ti52, Tf5200.
the

or
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ed

-
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d.

In that case, only the Gaussian approximation variance d
ates from the exact result.

The results are more different in the following case~Fig.
2!:

U15210, U250, V115V2250, V1251,

D15D25ntot56,

Ti5100, Tf51.

The choiceD15D25ntot makes level 1 full when level 2 is
empty, which enhances the effect of transitionsn2(D1
2n1)t2→1 . So does the rapid cooling~Ti5100,Tf51!. The
probable populations are then markedly different from
averages when a level is almost full~or almost empty!. The
variance of the continuous model has difficulty following th
evolution.

A case of rapid heating~Fig. 3!,

FIG. 1. Standard case.~a! Variance of the populations.d: ‘‘ex-
act’’ calculation;1: discrete model;* : continuous-discrete model
3: Gaussian model.~b! Lower level population.d: average popu-
lation ~‘‘exact’’ calculation!; 1: average population~discrete
model!; * : average population~continuous-discrete model!; 3: ref-
erence population of the discrete model;s: most probable popula-
tion ~continuous model!.
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U15210, U250, V115V225V1250,

D15D25ntot56,

Ti52, Tf5200,

yields a discontinuity in the time derivative of the correlati
calculated in the discrete model. The discontinuity occ
when the model changes the configurations it uses to c
struct the set of evolution equations.

The same case, with a still more brutal heating~Ti51,
Tf5100!, shows a problem in the discrete distribution o
tained from the continuous model~Fig. 4!. The continuous
model is of course continuous, but the modification int
duced to resume a discrete statistics~subtract the continuou
entropy and add the discrete one! has produced a probabilit
distribution that has sometimes a second maximum. The
therefore the danger of extrapolating a quadratic approxi
tion far from the reference configuration.

The last case we have retained~Fig. 5!,

U15210, U250, V115V225V1250,

D15D25ntot52,

Ti52, Tf5200,

shows that the models can handle correctly small degen
cies. It should be noted that with only three configuratio
the discrete model is exact in that case.

Let us recall once more that the variance in the Gaus
approximation would be much more accurate if the to
number of electrons was allowed to fluctuate.

FIG. 2. Rapid cooling.~a! Variance of the populations.~b!
Lower level population. Curve markers are as on Fig. 1.
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VII. CONCLUSION

We have presented two derivations of the same se
equations~14! and ~13! or ~15!, able to describe atomic sta
tistics off equilibrium in an average-ion model. The calcu
tion of the most probable configuration, using Eq.~14! with
Eq. ~6!, is what is already done by existing non-LT
average-ion codes@4,5,15,23#. The set of equations~13! or
~15! with ~9! for the matrix related to correlations is deco
pled from the ‘‘average-ion’’ one, so that it can be solv
afterwards. Equation~15!, which gives an approximation o
the covariance matrix, is linear, thus relatively easy to sol

Equations~14! and ~15! have the same form as Eqs.~7!
and ~10! for the ‘‘true’’ averages and covariance matri
which are obtained directly from the master equation by l
earizing the transition rates@17#. Note that the same genera
form of equations is known in different contexts such
linear Gaussian noise theory~see@24#, Sec. 5!. They can also
be obtained from a Fokker-Planck model~see @10#, Sec.
VIII-6, and Appendix of the present paper!.

In addition, a model has been set up that integrates
coefficients of a second-order polynomial of discrete po
lations, relying on a continuous model only to define a r
erence configuration.

A major achievement of these models is that they succ
fully reproduce the probability distribution of thermody
namic equilibrium, when external conditions make it po
sible. This property is stronger than obtaining either t
average population or the most probable one, which is
result usually obtained with existing off-equilibrium
average-ion models.

FIG. 3. Rapid heating.~a! Variance of the populations.~b!
Lower level population. Curve markers are as in Fig. 1.
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Numerical applications using two-level systems ha
shown a good agreement between our models and exac
culations. Certain dangers have been pointed out.

To give an idea of the progress expected from the p
posed technique, we can recall the simplifications made
the existing non-LTE atomic physics codes. For instan
Limeil’s nonequilibrium screened-hydrogenic average-
model Nohel@23# ~similar to Livermore’sXSN @4#!, assumes
a Gaussian approximation with a matrix similar to its LT
form,

v i j 5d i j

Di

nî~Di2nî !
1

1

Te

]2Ê

]ni]nj

,

whereTe is the temperature of free electrons. The non-L
model Radiom@25# often used in Limeil, relies on the con
cept of an ‘‘ionization temperature’’TZ ; it thus effectively
uses a LTE-like approximation, with a different temperatu
The non-LTE average-atom model of Rozsnyai@26# assumes
also a LTE distribution of states at temperatureTZ . The use
of an evolution equation to describe correlations should y
more reliable results than these rough approximations.

Moreover, dielectronic recombination and Auger effe
can be included in our model, as any other transition rate
be. Although they are two-electron transitions, similar ev
lution equations can be derived. In particular, in the conti
ous model, uncoupled equations like~14! and ~13! or ~15!
are obtained. Correlations are known to be particularly
portant in describing these two phenomena. The lack o
proper description of correlations has been a major difficu
in a statistical treatment of dielectronic recombination a

FIG. 4. Still more rapid heating; the continuous model fails.~a!
Variance of the populations.~b! Lower level population. Curve
markers are as in Fig. 1.
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autoionization@27#. Taking them into account would be
major step towards improving off-equilibrium atomic phy
ics models.

APPENDIX: FOKKER-PLANCK EQUATION

The variation domain for the populations being extend
to RN, let us consider the Fokker-Planck equation@10#

]

]t
P~$n%,t !52(

i

]

]ni
~ViP!1

1

2 (
i , j

]2

]ni]nj
~Bi jP!.

The average of a functionX($n%) of the populations is de-
fined as

^X&5E dNnP~$n%!X~$n%!,

while its value at the average configuration is denotedX̄
[X($n̄%), ni[^ni&. In particular, the evolution equations fo
the average populations^ni&, and for the correlations or co
variances

J i , j[Š~ni2^ni&!~nj2^nj&!‹5^ninj&2^ni&^nj&,

are obtained after integration by parts. It is essential for t
that the probability vanish at the border of the domain. T
results are

FIG. 5. Low degeneracy.~a! Variance of the populations.~b!
Lower level population. Curve markers are as in Fig. 1.
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d

dt
^ni&5^Vi&,

d

dt
J i j 5ŠVi~nj2^nj&!1Vj~ni2^ni&!1Bi j ‹,

which are identical in form to the corresponding equatio
~5! and ~8! derived from the master equation.
-

re

rt

t

nd
s

After linearization of the functionsVi andBi j around the
average configuration, the approximations~7! and ~10!, or
~14! and~15!, are obtained@see@10#, Chap. VIII, Eq.~6!–~9!
for linear Fokker-Planck models#.

However, the analogy should not be pushed too far,
cause the Fokker-Planck equation seems difficult to w
down explicitly in our case: one would have to decide how
extend the transition ratesni(D j2nj )t i→ j outside the do-
main 0<nk<Dk .
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